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A linear algorithm is given for the generation of covarlance

sequences for rat tonal digital filters using numerator ~rnd denom inator

coefficients directly. There is no need to solve a Lyapunov equation

or to solve for the residues of a spectrum, as in other methods. By

appealing to certain results frc~n the theory of inners we show the

algorithm provides a unique solution provided only that the filter

is stable.

Our results may be used to compute error variances due to product

rounding and signal quantization, and to generate covariance strings

used in other studies involving second—order properties of digital

filters.
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1. Introduction

There are numerous problems in the study of digital filters that

require solution of an integral like

1 p — l dz
— 

~~
-j - ~ H( z)fl (a )7 (1)

or, more generally, like

1 , i k d ~rk — -i;-i- ~ H(z)H(z )z —i- (2)

For example, in the computation of steady—state output noise variance

due to fixed—point quantization, one needs — (A2/12)r0, where t~

is the quantization step size and H(z) is the transfer function between

the quantization noise source and the filter output. The same kind of

computation is required for the computation of output noise variance

due to input signal quantization . More generally, sequences like

frk)O are required En the study of model reduction procedures for

approximating high—order filters with low—order ones.

The most obvious way to compute rk is to perform the indicated

contour integration by evaluating residues. Mitra, et. al. [21 have

tabulated the appropriate residues for generic terms arising in the

computation of r0. With some tedium the results may be generalized

to handle the calculation of rk. To apply the results of [21, one

must solve for poles of 11(z). This can be a nuisance, so one looks

for alternatives.

Note rk may be written [l~

rk hohk + c .,kK c , k > 0 (3)

where K is the solution to a matrix Lyapunov equation, is a state

transition matrix, (hk} is the unit pulse response sequence for 11(z),

_ _  -~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- ~~~~ - -~~~~~~~~~~~=,-~~~~ -~
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and c’ (1 0...0). The computational difficulty with (3) is that a

Lyapunov equation must be solved and determined . The latter deter-

mination involves solving for the eigenvalues of $, performing N

matrix multip lies to Initialize the recursion to follow , or exploiting

special properties of the matrix •. Another alternative is to proceed

as Jury does [3] and write r0 as the ratio of two determinants. This

alternative is not particularly attractive because it does not easily

generalize to the computation of rk.

Our approach follows .

II. An Alternative Method

Let 11(z) denote a stable autoregressive moving average digital

filte r of the form

M -mE b z
0(z) — 

ii-’O ; a — 1 ai, b~ real numbers

E a1z

(4)

E a1z t 
— 0 IzI 1

t—O

Denote this filter 11(z) : ABNA (N,M) . There is no need for M to be less

than N. The covartance sequence associated with 11(z) is {r k ) , with

rk — T_k given by

1 p k d zrk~~~~~~~,s ( z)z — , Y k

(5)
S(z) — 0(z)11(z~~)

Here the contour C lies within the region of absolute convergenc, of

11(a) . The contour may be chosen to be the unit circle in which case

S(r. ‘ sx p(j 2w f)) is th. spectrum (or magnitude—squar.d fr.qu.ncy

response) corresponding to 0(z).
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The unit pulse sequence corresponding to 0(z) is thk
) with

0 , k < O

N (6)

b — E a k , k > Ok n k—fl —

nal

Here bk is assumed zero for k > 11+1. The covariance sequence is

related to the unit pulse sequence as follows:

r — Z h h , k > Ok n n+k —

n0
(7)

rk 
- r_k

Substitute (6) into (7) to get

N
E a r — d  , k > O
n 0 it k—n k

(8)
N-k

d - E h bk n 0

Note dk — 0 for k > M+l, in which ease the {rk
} sequence behaves just

like a purely autoregressive one. That is, the sequence {rk) satisfies

a linear homogeneous difference equation for k > M + 1.

Prom (8) it is clear that the covariance sequence may be generated

recursively. The trick is to initialize the recursion by finding rk
for 0 < k < N. Write out (8) for k — 0,1,..

Ar —

~a0 a1 a3 aN F
a1 a2+a0 a3 a4 0

A — 
a2 a3+a1 a4+a0 a5 • 0 0

a3 a4+a2 a5+a1 a6+a0 . - . a.H 0 . 0 (9)

~~ ~N—l ~ 
• ~ a

1 ‘
~~

_
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— 1

— (re, r1 ...,r11) a — (d0, dl,...,dN)

The matrix A is generated as follows: begin with the first row

(a0, a
~
, a2,...,a11); left—shift this 

row (n—i) times and add the m
tt
~

overflow to the (n,n*+l) term to get the ~
th row. Thus the (i,j) element

of matrix A is

for j — 1

— (10)

aj+j..2 + a~..1 for j > 1

where a0, a11..- . .a~ are defined in (4) and a~ 
- 0 for i 0 and i > N.

For examp le, the fourth row is (a3, a4+a2, a~
+a i, a6+aO,...,aN~ 

0,. .,0).

St~C Appendix L ol L 4 1 .  The right—moat triangular region of the matrix

consists of zeros.

The Method. The solution method is to generate {h,~)~ from (6), solve

(9) for ~, and then use {h.K
}. {a~)~ , and {b ) ~ to generate an arbi-

trarily long finite—length version of {rk
) from (8). If only

is required (as in applications requiring only r0), then only (9)

must be solved using standard techniques for solving linear equations.

The same procedures were outlined in [4~ for generating covariance

sequences for autoregressive filters. For autoregressive filters,

— and dk 
— 0, k 0. The mat rix A has a I so arisen f n Jury ‘s

work L51 .

III. Couunents on Unicity

The connection between the {a~}~ and {bm
)
~ 

parameters of an ARMA (N,M)

filter H(z) and the corresponding covariance sequence (rk
f°, is unique.

provided 8(z) is stable and minimum phase and there are no pole—zero

cancellations. If 8(z) is stable and there exist no pole—zero cancella— 

— --- -.-~~~~ - - ---- -C— --- - - - - - - - - - - - - -  ~~~~~~~~
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tions, but 11(z) is not minimum phase , then corr esponding to H(s) is a

unique (rk l”., , but not vice—versa. Thus given the feedback and feed—

forward paramaters (a~)~ and (bm
)
~ 

for a stable H(s) one may solve for

a unique ~ from (9) and recursively get the corresponding unique 
covari—

ance sequence (rk
}°’
~, 

. The following theorem is arcane and relevant.

Theorem: The Matrix A is Nonsinpular for Stable Filters. Let H(s)

be the transfer function of a stable ARNA (N,M) filter, as defined in

(4). That is, the roots of A(z) • a ~~ lie strictly inside the
n 0  “

unit circle ~z( 
— 1. Then the matrix A of (9) is nonaingular and

the solution for r in (9) is unique.

Proof: Rotate the matrix A by i~/2 and interchange the 
order of columns

to obtain the matrix

~ 
a1 

a2 a3 
IN

a1 a,+a0 a~+a~ a4+a2 . . - aN_

— .~ ~I4
+•~%

Ø 
a
~
+a 

~ 

. . . (I I)

0

o 0 O . . . O  an

and preserve — ~~~ Define

A1(z) — zN A(z)

N N-n
— E a zn

N 
(t.~)

— )~ Ii z
II

Ii — an N-n

The roots of A1(z) lie ins ide r.~ — 1 by virtue nt the fac t that th~’

roots of A(z) do. Jury (5) shows that necessary and sufficient con-

_ _ _ _ _ _ _ _
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ditiona for the roots of A
1(z) to lie inside ~~ — 1 are

i) A
1(+1) > 0 , (_1) i~ A1(—l ) > 0

ii) A ’
1 

— X~_1 
~~~~~~~~~ 

positive

In order to relate the determinant of ~ to this stability criterion,

define

a a a ...a 0 0  ... a
it n—i n—2 0 0

O a a a a a
— 

n n—i 1 
~ — 

0
11+1 0 a ‘ n+l

:
o a~ L 1o I

n]

(13)

It follows from Jury [5) that

2)cl) — — )(—1~~A u)A1 — la I (14)

If 11(z) is stable, it follows that A1 
(±1) # 0, 1a 11 ‘# 0, and

therefore that j o)  — )A ) # 0. Q.E.D.
The following second—order example is illustrative.

Example: Assume 11(z) is second order. Then

1 a~ 12
A — a

~ a2+1 0 (15)

a2 ~i 
1.

This matrix is nonsingular provided 12 # 1 and a~ # ±(a2+1). These

conditions are illustrated in Figure 1. Thus A is nonaingular on the

two dimensional plene 
~~~ 

a2), minus the boundary lines illustrated .

Note the interior of these lines is the region of stability for a

second—order filter. Thus for a stable second—order filter the matrix

- .-—~~~~~- -~~~~~~ . -~ - --  - --~~~~~~~~~~~~ ~~~~~~~~~~~
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1
A is nonsingular. The implication does not go the other way. All

the (a1,a2) pairs outside the illustrated boundaries also give nonsingu—
lar A, but unstable 11(z). Solution of (9) for such pairs gives {rk}

sequences that are not covariance sequences.

IV. Remarks

The results presented here may be used to compute error variances
in finite word—length digital filters and to generate covariance strings

for use in model reduction procedures and the like. The computa—

tions seem simpler than those of [61 and generalize the results of [2-

[4). Software is available from the authors upon written request. 
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Stabi lity rt.gton for 

~~~~ / (A) non—singular
second—order H(?) +a 4-i — 0 everywhere bu t  on

boundary Unes

Figure 1. Regions of Stability and Nonsingularity

- ----~- —.-• -~~
. .



— - --.---‘—
~ 

— j - — 
— -I ,’

t l a ~i~ifhsdS~.cU~~ TY CLAS 5lP~C ATiOw OP ~si% PA GI (1~~~ . ~~~~

~~~~~~ ‘~~E~’ T5t”-~~~~E READ INSTRUCTIONS
N F tflN I U’J’._U ~~~~~~~~ “ ‘ “ BEFORE COMPLETING FORM

I SIPOST NUMSIN 2 GOVT ACCESSION NO. S ~EC IPstwTS C A T A LOG  NUM U A

Technical Report #28 ’ 
__________________________

4 T I T L E  (~~~d SubHH.)  I TYPE OF NtPO~~T A PERIOD COV E R E D

Generating Covartance Sequences and the
Calculation of Quantization and Rounding Error
Variances in Digital Filters s Pc~coRsl No o~o * PoRT MuM SIR

7 AuTNOR(.) S co,1~~RACT O~~ GRAN T NUMSEN(.)

3. P. Dugré
A. A. Beex /
L. L. Scharf N00014—75—C—0518

I PERFORMING ORGAN IZAT ION WA N E AND ~oo~~.ss - ~0. 
~~~~~~ A:0Ek~

E 
rT ~~~~~~~ 

T ASk

Department of Electrical Engineering/
Colorado State Universi ty
Fort Collins, CO 80523 ____________________________

~I C O N T R O L L I N G  O F F I C E  NAME AND A DDRE SS ~2 R E P O R T  D A T E

Off ice of Naval Research June 1979
Statistics and Probability Branch ‘~ WUMS~~~~OF PAGES

Arl ington, VA 22217 11
4 MONI TONING AG ENCY N A M E  A AODRESS(Sl dSff.r..,S from, (‘ontroSSInO 0555.’.) II -  SECURITY CLASS. (of ff1. ‘.e..i i

Unclass if ied

~S& DCCL A$SIPICA’IIONTDOWWGRADIWOSCM £ DU L £

IS DISTRIOUTIOM STATEMENT (of SAl. N.pon)

Approved for public release; distribution unlimited .

17. DISTRISUTION STATEMENT (of ffi. .b.Irac t onI.r.d ffi bt..’& 30. Sf dSU.,...t I,... RW~
,
~)

IS %UPPLEME I4TARf NOTES

II K E Y W O R DS (ConfIne. on ,.r,ro. .Sd. SI n c...m,y ond Id.ntIfr ’ by Mo.’b nom.b..)

Covariance Sequence , Autoregressive Moving Average Process,
Quanti zation Noise , Round ing Error Variance , Digital Filter

30. AS$T R AC T (Con Slnu. on ,...... .Id. It n.e ...~~ ond SdsnSlfr. by block i,, b~~)

A linear algorithm is given for the generation of covariance sequences
for rational digital filters using numerator and denominator coefficients
directly. There is no need to solve a Lyapunov equation or to solve for the
residues of a spectrum, as in other methods. By appealing to certain results
from the theory of innera we show the algorithm provides a unique solution
provided only that the filter is stable.

Our results may be used to compute error variances due to product

OD ~~~~~~ ~473 EDITION OF I NOV II IS OSSOL IT!
S N 0102-014 550 1 l ln r l* .4 f1m,d

SECU RIT Y CLA $$IFI C AT I 0N OF twus PA GE (GI~on V... .nf~~~d)

- -_  

-- - -~- — - - -  —-- -~~~~~~~-~~- -~ .—---~~~~~- -



- - - - r- ~~~_  - -

upLLdsslLxea

~LI.URITV CLASSIFIC ATION OF TI4SS PAI$E(R7IIR O.Ia ZnI.~.4)

20. roun~ing and signal quantization, and to generate covarlance strings
{r used in other studies involving second—order properties of digital
fi~ ters.

- f  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1ne1~~aifi~d

- ~~~~~~~~ -~~~~~~ - —
-
.‘ ~~~~~~~~~~~~~~~~~~~~~~~~ 

I1icTIT~YTTT


